

TBGL

MovieFX: Blending based

bokeh
Blending based effect for any hardware

Petr Schreiber

TBGL programming

TBGL programming
for advanced

23rd August 2010

MovieFX: Blending based bokeh

2

Introduction
There is an interesting trend which can be observed in the cut scenes present in many videogames

released in the last years. Almost every 3D game now shows increased focus on cinematic feeling,

which is achieved by extensive use of motion capture and specific work with camera, which includes

not only its movement in the scene, but also simulating some of the optical properties as well.

This article provides one of the possible implementations of scene background blur, which is often

referenced as bokeh in photography. You can see basic example on Pic. 1, where the bird is clearly

separated from the out of focus background.

Pic. 1: Sharp bird and blurred background

Discussed technique also helps to stress more attention on the objects in the foreground, while still

providing visually very compelling render of the scene behind with acceptable hardware

requirements.

Please note that what follows is not fully featured depth of field simulation, but more an

approximation usable for example in the mentioned cut scenes.

Possible approaches
There are many ways to achieve the blurred background, the most straightforward one would be to

use pre-rendered image which was blurred in image editor. While this will indeed result in the fastest

rendering, it is not well suited for cases when we need the background dynamic. That means, cases

where camera flies around some object or where there are some moving objects in the background

would mean using huge number of pre-rendered frames, which is both resource intensive and not

very flexible when we need to do many changes to the background.

For linearly blurred background, it would be possible to render the scene to viewport smaller than

the target render surface, capture the image to texture and then stretch the texture fullscreen.

While this is probably the fastest approach, the result doesn’t look very natural.

Another option would be to use OpenGL imaging extensions [1], which allow casting some

convolution filters on image. The problem is that most implementations have this feature realised in

software, so it can become very slow for higher resolutions. It is also not standard feature, but an

extension programmer needs to check for. In the end, convolution is generally quite intensive

operation, highly depending on size of the convolution kernel, which affects not just one pixel, but

also its nearest surroundings, as shows Pic. 2.

MovieFX: Blending based bokeh

3

Pic. 2 Convolution filter floating over 2D data[2]

Next possibility is to take advantage of shader programming, which is common practice on modern

hardware. We can render scene to some kind of buffer, and then perform Gaussian blur on each of

the pixels [3]. This approach is used most widely, yet it gets slow on lower end hardware and it is

unusable on graphic card without recent shader model.

Similar approach would be to use OpenCL to perform the image convolution. This is very common

use of the GPU, which provides significant boost over CPU based solution, yet it requires decent new

hardware as well.

Blending based approach
This article presents slightly different approach comparing to those mentioned in previous chapter. It

uses just the resources present on all GPU hardware, which are textures and blending. It can be

achieved using TBGL without any need for auxiliary OpenGL code.

The idea behind the technique is somehow simple. I am sure the reader can remember at least one

movie where some person was hit to head, drunk or present in other similar state, affecting the way

he sees the world. In such a case, we can observe the image is repeated to make impression of

damaged vision, as seen on Pic. 3.

Pic. 3 “Damaged vision”

Very similar approach can be used for the purpose of blurred image. It is only necessary to make sure

the image shift is more regular, in fact circular. This is shows Pic. 4 in exaggerated manner to

highlight two interesting characteristics.

MovieFX: Blending based bokeh

4

Pic. 4 Layout of image layers for blur

The radial offset tells us how much the image will be blurred, how far it will be “exploded” beyond

the normal. Image with no blur would have radial offset equal to zero.

The second characteristic is the number of images composing the circle of blur. On the image we can

see 12 of them, but it can be any number. Higher the count, better the blur impression is. Generally,

it is safe to say that you need more images with bigger radial offset and vice versa. For typical

applications, based on the tests, the ideal compromise is having about 15 layers of images.

Where to actually take the image for blurring? It is as simple as rendering the part of scene we want

to blur directly to texture instead to screen.

It is unlucky that there is still quite a big number of graphic cards, which have problems with textures

which are not sized to power of two dimensions. For this reason the program should first check for

the NPOT support, create target texture accordingly and if necessary, adjust the viewport size for

background rendering.

 ' You need to create variable to which we will pass data later
 Dim texInfo As TBGL_tTexturingInfo

 ' To fill variable fields, just use following
 TBGL_TexturingQuery(texInfo)

 ' Use the passed variable for tests in your code
 If texInfo.NPOTSupport = %TRUE Then

 ' -- Grab screen at full detail
 bokehInfo.Width = width
 bokehInfo.Height= height

 Else
 ' – Find closest match
 TBGL_EvaluatePOTMatch(width, height, bokehInfo.Width, bokehInfo.Height)
 End If

radial offset

MovieFX: Blending based bokeh

5

 ' -- Make the target texture safely at checked size
 TBGL_MakeTexture(String$ (bokehInfo.Width*bokehInfo.Height*3, 255),
 %TBGL_DATA_RGB,
 bokehInfo.Width, bokehInfo.Height, bokehInfo.textureID,
 %TBGL_TEX_LINEAR)

Code 1: Creating texture to render to in safe way

Before you actually render the scene to texture, it is necessary to setup viewport to size of the

texture. This might differ from windows client dimensions in case the NPOT textures are not

supported and the code above picked nearest closest power of two match.

To make sure this will pose no problem, we need to use combination of two commands –

tbgl_Viewport and tbgl_RenderMatrix3D.

Sub BokehRender_BeginCapture(bokehInfo As tBokehInfo)
 ' -- Set viewport to texture size
 TBGL_Viewport(0, 0, bokehInfo.Width, bokehInfo.Height, %TBGL_PARAM_PIXELS)

 ' -- But maintain original window ratio for perspective
 TBGL_RenderMatrix3D(%TBGL_CLIENTAREA)
End Sub

Sub BokehRender_EndCapture(bokehInfo As tBokehInfo)
 ' -- Capture the image
 TBGL_RenderToTexture(bokehInfo.textureID, 0, 0, bokehInfo.Width, bokehInfo.Height)

 ' -- Set viewport to original size
 TBGL_Viewport(0, 0, 1, 1, %TBGL_PARAM_RELATIVE)
 TBGL_RenderMatrix3D
End Sub

Code 2: Auxiliary procedures for maintaining correct aspect ratio for the rendering

Now just the final two steps remain – actual rendering of the background bokeh and the focused

foreground.

Rendering the captured image to create illusion of bokeh presents few challenges. The first one is

how to compose the images together. Here comes in the blending, which is designed for such a

cases. But it is not that simple.

It is important to note that when blending the image, to maintain its brightness, the multiple copies

must be rendered at fraction of the brightness. So for 12 layers, you should render each image at

1/12 of intensity of original picture. This is easily achieved by approach shown in Code 3.

 brightness = 255/ bokehInfo.numImages
 TBGL_Color brightness, brightness, brightness

Code 3: Using TBGL_Color function to manipulate brightness

MovieFX: Blending based bokeh

6

Second problem is depth information. As the scene we rendered to texture will serve as background

and everything else should go in front of it, it would be ideal to make it depth neutral. This is made

possible by disabling the depth mask, which stops writing to depth buffer for the time of rendering

our layers.

 ' -- Set proper blending mode
 TBGL_BlendFunc(%GL_ONE, %GL_ONE)

 ' -- Set 2D rendering mode for the layers
 TBGL_RenderMatrix2D(-1,-1,1,1)
 TBGL_ClearFrame

 ' -- Disable lighting for natural color and
 ' -- depth mask to make possible rendering forgeground later
 TBGL_PushStateProtect(%TBGL_LIGHTING Or %TBGL_DEPTHMASK)
 ' -- Texturing and blending is required to properly draw the image
 TBGL_PushState(%TBGL_TEXTURING Or %TBGL_BLEND)

 ' – Bind texture we rendered to
 TBGL_BindTexture(bokehInfo.textureID)

 ' – Fix brightness for the image layers
 brightness = 255/bokehInfo.numImages
 TBGL_Color (brightness, brightness, brightness)

 ' -- Render the images radially distributed around the center of screen
 aStep = 360/bokehInfo.numImages
 For f = 1 To 360 Step aStep
 TBGL_PushMatrix

 TBGL_Rotate(angle)
 TBGL_Translate(0.001*bokehInfo.radialOffset, 0)
 TBGL_Rotate(-angle)

 ' -- Cached polygon to hold image
 TBGL_CallList(bokehInfo.displayListID)

 TBGL_PopMatrix
 Next

 TBGL_PopState
 TBGL_PopStateProtect

 '-- Return rendering back to 3D
 TBGL_RenderMatrix3D

Code 4: Rendering the background bokeh

Code 4 shows the complete code to draw the bokeh. You can see we used 3 transformation

commands for positioning the frame. We could simply use Sin() and Cos() with just single

tbgl_Translate, but the way shown in code makes sure the calculations are performed on GPU, while

the mentioned trigonometric functions would have to be run on CPU, not speaking of necessity of

bothering the interpreter with extra DegToRad() call for conversion of degrees to radians.

MovieFX: Blending based bokeh

7

As the code restores the original render matrix, you can render the scene in foreground right after it

without any further steps necessary.

Problems of the approach
The demonstrated approach has three main issues to be aware of.

The first two are related to the colour precision. As noted in previous chapter, each image composing

the final effect is rendered at fraction of the brightness. The problem is that currently standard image

representation uses 8-bit numbers to describe each colour component. They are integer which

means that not every number of images we choose can be used to reconstruct the original image

brightness accurately.

For example, if we pick 15 images to represent the effect, we get the brightness calculated as

255/15, which equals to 17. If we multiply this number by number of images, we get back the original

255 brightness.

The problem is when the fraction evaluates as floating point number. This gets rounded to integer, so

it results in same brightness factor for different number of images. As the result, the final composed

image is not as precisely bright as the original image, and when dynamically changing the number of

images, there can be observed nonlinear brightness level of the background.

Pic. 5

To get the original brightness with blur, we would have to use 3, 5, 15, 17, 51 or for example 85

images. While the Pic. 5 looks dramatic, even other values are quite suitable for use until 25, after

which the jumps get bigger.

210

225

240

255

270

285

300

0 15 30 45 60 75 90

B
ri

gh
tn

es
s

o
f

co
m

p
o

se
d

 im
ag

e

Number of images used to represent the effect

Brightness factor accuracy depending on number of images

MovieFX: Blending based bokeh

8

The second problem is correct colour representation of bokeh. Thanks to number rounding, the

image can lose its visual fidelity with growing number of individual low brightness image layers.

This can be most effectively visualized with zero radial offset, which means no blur. With this setup

the layers are just drawn one over each other, as seen on Pic. 6.

Pic. 6: Colour degradation with growing number of layers

This again gets much less dramatic once nonzero radial offset is involved. In such a case further

interpolation takes place, and the single colour regions are softly washed out.

Pic. 7: Image with 15 image layers without (left) and with blur (right)

The last problem with blending based bokeh approach might be its full screen per-pixel blending

itself. With growing number of the layers, the number of operations increases. According to

performed tests, this factor is less and less limiting with the currently available hardware. Using low

end NVIDIA GeForce 9500GT, it is still possible to get smooth frame rate at 1080p display resolution.

360 30

1 15

MovieFX: Blending based bokeh

9

Conclusion
The approach discussed in this article provides the reader with complete implementation of

technique approximating bokeh rendering for game cut scenes.

Its advantage is wide hardware compatibility, easy implementation and possible parameterization

affecting both quality and final look of the effect.

The disadvantages of the solution lie mainly in the area of colour precision.

Part of the article are two example scripts, which demonstrate the technique. The scripts use

dedicated include file for bokeh rendering, which the readers are welcomed to use in their ThinBASIC

applications.

Pic. 8: Example application using the described technique

The first script shows scene displayed on Pic. 8, which shows focused object in front of completely

dynamic blurred background.

The second script renders just the effect itself, which can be parameterized using trackbar

manipulation to observe the bokeh closely. The script intentionally allows setting extreme values, so

the reader can observe the problems which can occur in some extreme conditions.

Thanks to Adam Schreiber for promptly providing the model of airplane used in the example script

Model of F360 used in second demo and images in the article is free art from

http://www.psionic3d.co.uk

MovieFX: Blending based bokeh

10

References
[1]Richard, Wright S., Lipchak, Benjamin a Haemel, Nicholas. OpenGL(R) SuperBible: Comprehensive

Tutorial and Reference (4th Edition). : Addison-Wesley Professional, 2007. 0321498828.

[2]Schreiber, Petr. Realizace vybraných výpočtů pomocí grafických karet. Brno : VUT, 2010.

[3]Guinot, Jérôme. Image Filtering with GLSL - Convolution Kernels. oZone3D.Net Tutorials. [Online]

8. 1 2006. [Citace: 2010. 8 23.] http://www.ozone3d.net/tutorials/image_filtering.php.

