

TBGL

MovieFX: Combining the

real and the virtual
Part 1

Petr Schreiber

TBGL programming

TBGL programming
for advanced

MovieFX: Combining the real and the virtual, part 1

2

Introduction
Welcome to the new MovieFX series of TBGL tutorials! As the name suggests, they will introduce you

to various ThinBASIC techniques, which can be used to produce moving pictures.

The "Combining the real and the virtual" sub branch of the movie related tutorials focuses on one

extremely attractive topic of today, which is enhancing pictures and movies of real world around us

with computer generated elements.

The structure of tutorials is done in classic way from basics to more complex topics.

The series “for advanced” presume the reader is already familiar with TBGL .

MovieFX series start with very simple scene, which will show you how to turn still photo into less

static video with one CG object added.

Planned clip
Our goal for this lesson will be to take still photo from digital camera, and add Unidentified Flying

Object to it. The script will produce series of bitmaps, representing the flight of the UFO, which we

will convert to AVI file using freeware VirtualDub1.

Pic. 1 Planned scene - UFO flying from the observer out to the distance

1
 You can download this tool at http://www.virtualdub.org/

http://www.virtualdub.org/

MovieFX: Combining the real and the virtual, part 1

3

Setting up the scene
We will use TBGL module and Scene-Entity system to accomplish the job. Our scene will consist from

few basic elements:

 camera and its target pivot

 background photo

 UFO model

 light

Camera is essential, as it represents our view on the scene. The white house in the centre of the

photo is in reality approximately 200 meters away from the digital camera, and we are pointing up

(and also sideways) with the camera, so it marks place 10 meters above the observer on the wall of

white house.

The following picture explains the situation:

Pic. 2 Position of camera and its pivot

 We will place the virtual camera at position (0, 0, 0) and we will point it to the pivot point (150, 10,

150), which is the point at the wall of the house we looked on in the reality.

The pivot of the camera is used to enable one very important thing – shaking of the camera. As we

use still image and 3D model, to add the sensation of watching video captured by camera in hand it is

enough to shake the pivot point. This way we will get synced shaking of background and other 3D

objects added to the scene.

Background photo has been shot with digital camera. It has the 4:3 proportions. As you might

remember, older 3D cards do support only resolutions of power of two, so you should resample the

image to 1024x768, and add 128 pixels to top and bottom, to make it squared and power of two.

Camera at (0,0,0)

Camera pivot and image at

(-150,10,150)

Positive X

Positive Z

Positive Y

MovieFX: Combining the real and the virtual, part 1

4

The quad with background image should be scaled in a way it is not completely visible on the screen.

This is just to make possible shaking of the image. In case the image would be scaled to fit the frame,

the borders of the quad would be visible during the shaking which would completely ruin the effect.

To make image always face camera, just use TBGL_EntitySetTarget to make your background entity

look directly at the camera. To prevent interaction of light and fog with the frame, use

TBGL_PushStateProtect / TBGL_PopStateProtect commands to isolate the rendering of the texture

quad.

UFO model can be created using any 3D modeller with support for OBJ export. You can use OBJ to

M15 tool to convert the file to TBGL friendly M15 file format.

You can animate the UFO any way you like, for example using TBGL_EntityPush and TBGL_EntityTurn

commands.

Simulating light and atmospheric conditions
The photo has been shot at very special light conditions - on the morning, when the front, bright face

of the white house is directly illuminated by Sun, and the other side is basically not lit. It is essential

to bring these light conditions to our virtual space as well.

Light in TBGL system has 2 colour related properties - diffuse colour and ambient colour.

The ambient colour is present on faces not lit by light, while the directly lit faces are coloured using

sum of RGB components of diffuse and ambient light colours.

Using your favourite bitmap editor, you can spot the bright face has colour approximately

208,214,193 and the dark side of the house has colour of 100,126,138.

Note: We are lucky the house is white. In other situations it would be advantageous to prepare simple

white cube painted with matt white colour to use as reference.

So we can set the ambient part of the light like:

The final colour of the light on fully illuminated face is sum of the diffuse and ambient parts. That

means, if colour of the bright wall of the house was 208,214,193 and the dark 100,126,138, then the

diffuse component of the light equals their difference.

TBGL_EntitySetAmbient(%sScene, %eLight, 100, 126, 138)

TBGL_EntitySetColor(%sScene, %eLight, 208-100, 214-126, 193-138)

MovieFX: Combining the real and the virtual, part 1

5

Pic. 3 Places where you should take the color samples

As the UFO will be truly “alien“ element to the scene (2D background vs. 3D object), it is good to

somehow improve the feeling of the depth. When you stand on high mountain, you can see the

terrain in distance fades away in some kind of fog, even at clear weather. This atmospheric effect will

be our key to improve the depth feel.

We will simulate this using TBGL fog. As the colour of the fog, we will use colour of the sky around

the houses. It can be for example 206,224,229. Just keep in mind to setup the fog very thin and

subtle, to not hide UFO in the atmosphere too soon.

Generating bitmaps
To finally generate the video, we need to export series of bitmaps first. This can be achieved using

TBGL_SaveScreenshot command. Simply use counter variable to create file names with ascending

numbering. It will save you work of manual arrangement of files later.

 As we are targeting video, we want quality. To avoid rendering of teared frames, always enable

vertical synchronization using TBGL_UseVsync. This ensures the screen will be updated only when

whole frame is ready.

Another very important note is to use manually specified constant frame rate when using the script

in frame generation process and do not use any functions dependant on time, such as timer,

getTickCount or hiResTimer_Get.

Diffuse + Ambient =RGB (208,214,193)

Ambient =RGB (100,126,138)

MovieFX: Combining the real and the virtual, part 1

6

Final touch
Once you generate numbered frames of the animation, start VirtualDub and drag the first file in

series to the program window, others will be added automatically.

Then you simply select target frame rate using Video/FrameRate option, and add suitable post

processing filters. I recommend adding motion blur, interpolation and down sampling the frames to

target resolution2. The filter dialog then might look like on the picture.

Pic. 4 Used filters in Virtual Dub

We could do the motion blur and interpolation in ThinBASIC, but it would make no point when the

VirtualDub does the job for us. This way we can keep the script relatively simple, and do the routine

work using third party tool.

Frame from final rendering can look similar to the image below.

Pic. 5 Sample rendering

You can observe the lighting and blur caused by shake are in sync. The fog fading to atmosphere

colour starts to manifest at this distance, helping to better integrate the UFO.

2
 It is good idea to render images at higher resolution than the target one is, down sampling in Virtual Dub will

smear jagged edges of 3D objects, in case you did not used antialiasing

